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Social Interactions -
Is There Really an Identification Problem?1

1. Introduction

Social interactions are central to modern economic theory as represented by works such as
Durlauf (1996), Bénabou (1996a, 1996b) or Borjas (1992, 1995), that explain growth and in-
come distribution jointly. This essay examines the position of Charles F. Manski concerning
"endogenous social effects", as published in Manski (1993a), Manski (1993b) and Manski
(1995). Endogenous social effects are given when

the propensity of an individual to behave in some way varies with the prevalence of that behaviour in
some reference group containing the individual.2

It is an everyday experience that the behaviour of individuals belonging to the same social
group tends to be correlated. In his seminal work, Manski differentiates two basic types of
feedback between group and individual and he maintains that it is not possible to discriminate
between the two by mere observation. What is more: Only under very favourable conditions
can social effects be distinguished from other reasons for correlations within social groups,
such as selectivity.

Manski's forceful critique challenges not only the numerous empirical efforts to understand the
nature of social interactions. In the light of his arguments many theoretical disputes in the so-
cial sciences suddenly appear to be rather futile. Thus, a further analysis of his position seems
well justified.

The result is encouraging. Identification can quite generally be reached by relaxing one of
Manski's key assumptions. In his econometric model, social effects do not flow from the out-
comes realized within the group, but from their respective conditional mathematical expecta-
tions. By substituting this assumption by a less demanding one, a model is obtained that is fully
identified, if one is willing to make use of restrictions on the structural error terms. Within the
new framework, Manski's analysis rightly characterizes the case of infinitely sized reference
groups. In the second part of the essay, FIML estimators of all parameters are explicitly de-
rived for the modified model. This enables us to analyse finite sample properties of the new es-
timator. In general, the new estimator allows one to differentiate clearly between endogenous
social effects, exogenous social effects and correlated effects.

                                               
1 The opinions expressed in this essay are those of the author alone and do not necessarily represent the view

of the Deutsche Bundesbank. I owe a great debt to Jürgen Schröder and Martin Hellwig for encouragement
and many helpful comments, and even more so to Klaus Winckler. At a later stage, I got important feedback
from Axel Börsch-Supan and Reinhold Schnabel. I appreciate especially the thorough comment by Charles
F. Manski that led to a major revision. Bob Chirinko gave me encouragement and some final hints. I also
thank participants of two seminars in Mannheim and my audience at the Annual Congress of the Verein für
Socialpolitik in Mainz, here especially Dieter Bös. Stefanie von Kalckreuth and Angela Lahee proof-read
the English version.

2 Manski (1993b), p. 531.
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2. Identifying Social Effects

2.1. Endogenous, Exogenous and Correlated Effects

In order to discuss the inferential problems posed by social effects, Manski constructs a meta-
model that embraces many phenomena as special cases. Let every individual in a population be
characterized by a vector of jointly distributed variables ( )vy zx . The scalar y  is a vari-

able that may partly depend on social effects. An example of such a variable might be the
school records of a pupil or his or her occupational aspirations. The J -dimensional vector x
contains all the relevant exogenous characteristics of an individual's reference group. This is
the group within which mutual influence seems possible, such as the pupil's class or his or her
neighbourhood. A reference group might also be characterized by general attributes such as
ethnicity or sex.3 The K -dimensional vector z  stands for individual qualities with relevance for
the dependent variable, such as socio-economic background or health. Vectors ( )zxy  can

be observed. The random variable v  is not observable. Manski offers three general hypotheses
that might explain why the behaviour of individuals belonging to the same group often shows a
high degree of correlation.

To begin with, the variable y  might be directly influenced by the mean of that same variable
within a reference group. This is what he calls an endogenous social effect. Examples are peer
effects among pupils, herding behaviour during financial crises or interdependencies in con-
sumer demand.4 In Manski's theoretical exposition, the endogenous social effect does not
originate from the outcome of other individuals in the same group. Instead, the conditional ex-
pectation ( )xyE  of the variable is deemed relevant, given the general characteristics x  of the

reference group. The analytical consequences of this assumption will be analysed in the next
sections.

Closely related are the possible effects of the exogenous characteristics of the actors in the so-
cial context. In the above example, an exogenous social effect is present if not the academic
performance of the classmates, but their socio-economic status or national composition act
upon the achievements of a pupil. As before, Manski assumes that exogenous effects operate
via a conditional expectation, in this case ( )xzE . The distinction between endogenous and ex-

ogenous effects is of great practical importance with respect to the effect of discretionary in-
terventions. Tutoring weaker pupils, for example, will have a beneficial effect on their class-
mates only in cases of endogenous social effects.

Completely different conclusions are reached by assuming that the variable y  might directly
depend on the characteristics x  of the reference group, whether a social interaction takes place
or not. On average, children of foreign parents in Germany show – depending upon the coun-

                                               
3 The concept goes back to Herbert Hyman (1942), see also Hyman (1968). In the original formulation, the

term is not limited to groups that contain the individual. For Manski's problem, group membership is con-
stitutive.

4 For an example see the empirical study by Case and Katz (1991).



3

try of origin – a much weaker performance at school than ethnically German children.5 It is
conceivable that this is the result of endogenous or exogenous social effects. The socio-eco-
nomic status of many foreign families in Germany is relatively low. If their status affects the
performance of their children, and if these children's reference group comprises mainly class-
mates of their own nationality, then even the performance of foreign children with average ex-
ogenous characteristics will be substandard.6

Alternatively, this empirical regularity can be explained by invoking the language problems and
cultural interferences associated with the group characteristic "foreign pupil of nationality x "
without social effects playing any role whatsoever. Any such direct causal relationship is la-
belled a correlated effect by Manski. Correlated effects can also be a consequence of institu-
tional influences, if foreign pupils of certain nationalities are systematically discriminated
against in German schools, or if the pupils of a given school are all exposed to the same bad
teachers.7 A further important source of correlated effects is self-selection. This phenomenon
is of special importance in the study of social effects within neighbourhoods. Persons with un-
favourable but unobserved characteristics might concentrate in low-cost neighbourhoods,
which causes a spurious correlation of income and other variables.8

2.2. The Reflection Problem

Manski characterizes the inductive task posed by endogenous social effects as
...the problem that arises when a researcher observing the distribution of behaviour in a population
tries to infer whether the average behaviour in some group influences the behaviour of the individuals
that comprise the group.9

He introduces the term "reflection problem". The problem is
similar to that of interpreting the almost simultaneous movements of a person and his reflection in a
mirror. Does the mirror image cause the person's movement or reflect them? An observer who does not
understand something of optics and human behaviour would not be able to tell.

The basic idea shall be developed using a simplified model. Let the outcome y  of a person be
determined solely by correlated effects, endogenous social effects, and a disturbance term. The
structural equation is:

( ) vyy ++β+α= δx'xE . (1)

Here, x  is a vector of K  characteristics of the person's reference group. The conditional ex-
pectation ( )xvE  is zero. Manski assumes that ( )xyE  can be estimated consistently and he

treats the regressor as known. If β ≠ 0 , the linear regression expresses an endogenous social
                                               
5 Alba, Handl and Müller (1994).
6 This thesis is maintained by Borjas in his studies on "ethnic capital" with regard to the relative economic

performance of immigrants in the USA. See Borjas (1992) and Borjas (1995).
7 Jencks and Mayer (1990), p. 115.
8 The correlation in the behaviour of adolescents mentioned above can by explained in this manner, as well as

the influence of the social composition of the neighbourhood on the academic performance of pupils. The
problem is analysed in Rauch (1993) and Corcoran et al. (1992).

9 Manski (1993b), p. 532.
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effect. The term δx'  allows for correlated effects. As an example we can take the correlation
between performance at school and ethnicity of pupils in Germany. Here the reference group
characteristics x  have a dual function. In addition to their direct influence on y  – the conse-
quences of the inability to speak German properly and possibly discrimination – it conditions
the expectation ( )xyE  that plays the role of another regressor variable. It is impossible to

distinguish between these two aspects of belonging to a certain social group. Solving for the
conditional expectation, one obtains:

( ) ( )δx'x +α
β−

=
1

1E y  .

There is perfect collinearity between the regressor variables ( )xyE  and x  in (1). Elimination

of the mathematical expectation from (1) leads to the reduced form:

y c v= + +0 x'c1 with α
β−

=
1

1
0c ; δ

β−
=

1
1

1c .

Under appropriate circumstances, this equation may be consistently estimated. However, such
an estimate does not contribute to answering the question of whether or not there are endoge-
nous social effects in the system. For any hypothetical β* ≠ 1 we can state a vector ( )** δα
such that

1
1 0−

=
β

α
*

* c and 1*
*1

1 c= δ
β−

 .

A linear space of bogus parameters ( )*** δβα  leads to the same reduced form as the true
parameters ( )δβα : They are observationally equivalent. Whatever the size of the data set,

it will not be sufficient to decide whether the data were generated by a system with parameters
( )δβα  or by one of the systems with parameters ( )*** δβα .

2.3. The Complete Linear Model

In addition to endogenous and correlated effects, Manski features exogenous social effects as
well as the action of individual characteristics. His complete specification is:

( ) ( ) vyy ++β+α= η+δ+γ ''EE zx'xzx   . (2)

The K -dimensional vector η  represents the effect of individual characteristics z . Exogenous
social effects are present if the K -dimensional vector γ is not zero: y  then varies with the

mathematical expectation of the exogenous variable z  in the reference group.

It is assumed that ( ) 0,E =zxv , and there is no further distributional information. Calculating

the mathematical expectation ( )xyE  by integrating (2) with respect to z  and v , one obtains:

( ) ( ) ( )[ ]δη+γ x''xzx ++
−

= E
1

1E α
β

y   .

For a given x , the conditional expectation ( )xyE  is a constant. It is a linear function of the re-

gressors ( )( )xxzE1 . The reduced form is calculated in the familiar way:
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( ) vcy ++++= 3210 'E cz'cx'cxz   , (3)

with ( ) ;δη+γ
β−

=β
β−

=α
β−

=
1

1;
1

1;
1

1
210 ccc η=3c . (4)

The parameters of the reduced form do not allow one to deduce the structural parameters
α β, , γ, and δ. Still, estimating this equation does yield information on the structural parame-
ters. The effect η  of the individual characteristics can be inferred. Moreover, it is possible to
decide whether there are any social effects at all. If c 01 ≠ , then γ≠ ∨ ≠0 0β . If the outcome
of y  happens to depend on the expected outcome ( )xzE , the presence of endogenous and/or

exogenous social effects can be concluded. This is by no means unimportant, as in scientific
practice it proves to be quite difficult to establish social effects of any kind.10

As a necessary precondition, ( )xzE  must supply independent information. If ( )xzE  can be

written as a linear combination of the other regressors ( )xz1 , even this limited identifica-

tion is lost. This situation pertains, if, for example:

(a) z  is a (mathematical) function of x . For any x , we have ( ) ( )xzxz =E ;

(b) ( )xzE  does not vary with x . ( )xzE  is then a constant and collinear with 1;

(c) ( )xzE  is a linear function of x .

All in all, Manski concludes, making statements on the presence of social effects is possible
only if the variables x  defining reference groups and the exogenous variables z  are related in
the population by a moderately strong, but non-linear statistical dependence. The distinction
between endogenous and exogenous effects, important as it may be with regard to the results
of discretionary changes, is empirically not feasible, nor is the distinction between endogenous
and correlated effects. This general identification problem may be "solved" by discriminating in
advance in favour of one of the competing hypotheses. If only exogenous social effects and
correlated effects are permitted, then β = 0  by definition and the model is fully identified. Lim-
iting the analysis to endogenous social effects, such that 0== δγ , yields the same results.

Neither Manski nor the author of this essay knows of any empirical work that permits both
types of social effects.

2.4. Is There Really an Identification Problem?

Manski uses the mathematical expectations ( )xyE  and ( )xzE  as regressor variables in order

to model social effects. These magnitudes are mathematical functions of the characteristics x .
This technique highlights the problem of differentiating between social effects and other conse-
quences of belonging to a certain social group.

However, when one considers social interactions in real life, this procedure seems to idealize
matters slightly. In a social group of finite magnitude (a family, a class of pupils, a neighbour-
hood), the group mean is as stochastic as the individual outcomes and it is difficult to find a
                                               
10 As an example see the survey of Jencks and Mayer (1990).
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substantive interpretation of why, for example, the mathematical expectation of the classmates'
performance, but not their actual performance should act as an externality on an individual pu-
pil. In general, a social effect operating via a mathematical expectation can result if the agents
hold rational expectations in the sense of Muth, or in strategic situations of a game-theoretic
nature. Yet in these two cases, there is no identification problem of the kind described above,
because the conditioning variables for the relevant mathematical expectations would also in-
clude the individual characteristics of the group members. Alternatively, the structural equation
(2) might deal with the limiting case of a social group with infinite size. In this case, the law of
large numbers makes the group means converge to the conditional expectation. From the em-
pirical literature on social interactions, however, the author is not aware of any such formula-
tion. Typically, the social environment is supposed to act on the individual via the arithmetic
mean or another linear function of values realized by the group members, as is clearly shown
by Manski's own characterization of the inferential problem cited above.11 We will later return
to the problem of infinitely sized reference groups.

In order to analyse the significance of this key assumption, Manski's model will here be modi-
fied by assuming that the source of the social effects is the average outcome within the group.
This eliminates the multicollinearity problem, as the group average varies and is not a linear
function of the other exogenous variables. Instead, a new, but "classical" identification problem
arises: The endogenous variables are determined by a system of interdependent linear equa-
tions.12 However, with the help of restrictions on the error term, this identification problem
can be solved, and the road to this solution yields new and interesting insights into the nature
of social interactions.

2.5. Social Effects as Group Interactions

The model is modified and specified by the following assumptions:

A1) Endogenous or exogenous social effects derive from group averages;

A2) The groups are of finite size;

A3) The error terms in the equations for the individuals are i.i.d. with variance σ 2 0> ;

A4) β  is less than 1 in absolute value.

Assumptions A1 and A2 together remove the multicollinearity. The original model would re-
sult if group sizes approach infinity. A3 is a restriction concerning the covariance matrix of the
error term, and A4 is a stability condition. When a specific estimation procedure is considered,
some additional assumptions concerning the distribution of the error term will prove conven-
ient. Now the modified model is analysed in some detail.

                                               
11 This also holds for the paper by Alessie and Kapteyn (1991) on demand interdependencies cited by Manski.
12 Theil (1971), pp. 447-8, illuminates the close affinity between these two types of identification problem.
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An individual I ji  belongs to the group { }
jMj2j1jj I,...,I,IG =  of size M j . The data set includes

N  complete groups, i.e. ∑
=

=
N

MM
1j

j  individuals. Group G j  is described by a J × 1-dimen-

sional vector x j  of characteristics. This vector is a distinctive feature of every member of the
group. As several groups may be characterized by a common vector x j , it can be interpreted as
a "type". Furthermore, the individual I ji  is described by a K × 1-vector z ji  of exogenous char-
acteristics and the outcome y ji  of a scalar endogenous variable.

Within the group, endogenous, exogenous, and correlated effects are permitted. Thus, both the

mean of the exogenous variable, ∑
=

=
j

1i
ji

j
j

1 M

M
zz , and the mean of the endogenous variable,

∑
=

=
j

1i
ji

j
j

1 M

y
M

y  may have a systematic influence. The structural equation for individual I ji

reads:

jijijjjji '' vyy +++β= η+δγ z'xz   , (5)

where the v ji  are i.i.d. with zero expectation and variance σ 2 . A constant is contained in the
vector x j .

The OLS estimator of this equation is biased and inconsistent, as the v ji  and the yi  are corre-
lated. The reason is that the dependent variable y ji  enters on the right-hand side of the equa-

tions for all the remaining group members. Obviously, the problem will not disappear by taking
averages on all group members but individual j. The group G j  must be described as a system of

interdependent regression equations.13

Let ( ) '
jjM1jj yy K=y  be the M j × 1-vector of endogenous variables and ( ) '

jjM1jj zzZ K=  the

M Kj × -matrix of exogenous variables. Furthermore, let 
j)M(

1  be an 1j ×M -vector with ele-

ments all identically equal to 1. Then

( )jj

j)(j)(

11

11
1'1

jj
j

MM

MM MM

×















==

L
MOM

L
11D

is a matrix that, if postmultiplied by y j , generates a vector with elements identically equal to
y j . An analogous result holds for postmultiplication by Z j. Finally, let v j  be an M j × 1-dimen-

                                               
13 The simultaneity established by social effects and the resulting identification problem were first addressed

by Duncan, Haller, and Portes (1968) and Duncan (1970). In the literature, the interdependence is not al-
ways treated properly. Investigating the determinants of educational expectations and occupational aspira-
tion of high school sophomores, Alexander, Eckland and Griffin (1975) use the best friend's college plans
and the proportion of peers planning to attend college as regular exogenous variables. They even happen to
observe a high correlation between the social background of a pupil and the college plans of his best friend,
but explain this correlation by invoking "status homophily". Sewell and Hauser (1972, 1975) use a similar
procedure in their work on the ambitious "Wisconsin model of status attainment". Bank et al. (1990) cir-
cumvent the problem by using as exogenous variables the behaviour of close friends in the past.
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sional random vector with covariance matrix ( )jM
2Iσ . With this notation, the system of equa-

tions for group G j  can be succinctly stated as

y D y D Z 1x ' Z vj j j j j j j j= + + + +β γ δ η  . (6)

By rearranging,

( ) jjjjjjj vZ'1xZDyDI +++=β− ηδγ

and premultiplying by the inverse

( ) j
1

j 1
DIDI

β−
β+=β− −

one obtains as a reduced form the vector equation:

y D Z c 1x 'c Z c wj j j j j 3 j= + + +1 2   , (7)

with ( ) ηδη+γ =
β−

=
β−

β= 321 ;
1

1;
1

1 ccc ; jjj 1
vDIw 





β−
β+=  . (8)

These equations correspond to the reduced form (3) and (4) of Manski's model. The coeffi-
cients c c1 2, , and c3  are equal to their counterparts. Again, by the coefficients only η  is identi-
fied, but not β , γ, or δ. A closer inspection shows that the reduced form derived here contains
more information. The structure of the error term w j  is determined in a characteristic way by
β . The covariance matrix of w j  is defined by the ( )jj MM × -matrix jΨ :

( ) 













 −

β−
+σ=





β−
β+σ== j2

2
2

j
2

jjj 1
1

1
1

E DIDI'wwΨ   . (9)

By expanding the above matrix, it can easily be verified that

( )
( ) ( ) ( )2

jkjijijkjij

jkjiji 1
,covvar,cov

,covvar
β−=

−+
−

wwwwwM
www

   ,

an equation by which β  is determined uniquely because of A4. The remaining parameters of
the structural form can be recovered from the equations in (8). A consistent estimation of the
reduced form thus allows us to infer all the parameters of the structural form.

Proposition 1: Taking into account the structure of the reduced form error, all the parame-
ters of the modified model are exactly identified.

In other words: Manski's assumption concerning the working of social effects is absolutely
critical for his key result.

2.6. The Statistical Fingerprint of Social Effects

Identification succeeds with the help of restrictions concerning the covariance matrix of the er-
ror terms in the structural equations.14 These restrictions permit to trace the key parameter β
                                               
14 In many econometric textbooks, the identification problem is reduced to the question of whether the struc-

tural equations are identified by the coefficients of the reduced form. This question is then answered by the
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back from the errors in the reduced form. The seminal works of Goldberger (1972), Griliches
(1974), and Chamberlain and Griliches (1975) have explored the special significance of the co-
variance matrix for the identification of structural models in the social sciences.

Identification of the present model rests on a fundamental property of social effects: For given
values of the exogenous variables they lead to covariances in the outcomes of group members
that are non-existent with regard to individuals in other groups. These positive or negative co-
variances serve to amplify or dampen random differences between groups of otherwise identi-
cal external attributes. The ratio between the dispersion within a group and the dispersion be-
tween groups is biased in a characteristic way. This will now be made precise.

The reduced form (7) and the structure of its error term (9) bear great resemblance to the stan-
dard random coefficient model for the econometric analysis of panel data.15 The reduced form
disturbance,

w v vji ji j= + −
β

β1  ,

is composed additively of an individual error term jiv  and an error term β
β1 − v j  specific for

group G j . The variance of this second error term clearly depends on the intensity of the social
interaction. Looking at the average outcome in group G j ,

( ) j2j31jj ' wy +++= c'xccz  , with w vj j= −
1

1 β   , (10)

we see that because of

2
2

j
j 1

11var σ





β−
=

M
w  ,

the variance of the error term increases with the strength β  of the interdependence between
group members. A positive β < 1 acts as an amplifier of random disturbances. A high outcome
of v j  is translated into a still higher w j  in absolute terms. However, looking at the deviations of

the individual from the average of its reference group,

( ) jji3jjijji wwyy −+−=− czz  , (11)

the variance of the residual does not depend on β , since by definition

w w v vji j ji j− = −   .

Actually we have:

( ) 





−σ=−

j

2
jji

11var
M

ww   .

                                                                                                                                                  
rank and order conditions. Yet the classic treatment of Fisher (1966) already dedicates a whole chapter to
the role of the covariance matrix.

15 See Hsiao (1986), Chaps. 2 and 3. In the case at hand, the disturbances related to group and individual are
correlated, as distinct from the formulation in the standard model.
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This is the statistical "fingerprint" of endogenous social effects within groups of finite size:
Relative to the variability within groups, the differences between groups are conspicuously
large or small. This central feature is suppressed by Manski's quasi-deterministic modelling
technique.

As an illustration, the graph below depicts the residuals of four reference groups, for the case
of strong and of weak positive social feedbacks. The ratio between the dispersion of the group
means on the one hand, and the dispersion around the group means on the other, indicates the
social effect:

( ) ( )2

j

jji

j

1
var

var
1

1 β−=
−

− w
ww

M
   . (12)

This equation concisely summarises the information on β  contained in the reduced form errors.
A consistent estimate for the numerator and the denominator is obtained from the squared re-
siduals of the OLS estimates of the equations (10) and (11).

Dispersion of the reduced form residuals for endogenous effects of varying strength

Beyond the inferential problem, the graph makes clear that endogenous social effects can be
very important for the analysis of economic inequality. Differences in the starting positions of
social groups such as families or cliques, e.g. with regard to human capital, are reinforced if
social interactions cause a positive feedback between the outcome of group members.16 An
endogenous social effect with 0 1< <β  in (6) is akin to an income multiplier in a simple
Keynesian macromodel. This concerns not only the average v j  of the residuals, but also the net

                                               
16 For a fascinating example in the same vein see Griliches' (1996) analysis of the "F-connection".
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effect of the vectors x j  and zj. Corresponding to this formal similarity, there is an analogy in

the underlying logical structure.

There are two limiting cases in which this road to identification breaks down. The first is the
case of infinitely large reference groups, such as "White Anglo-Saxon Protestants" or "My
Compatriots". This seems to be the case addressed by Manski. With growing group size, aver-
ages converge to their respective conditional expectations, and the variance of average residu-
als will disappear. Another extreme case is equally devastating: If every reference group is
unique, i.e. each group merits a dummy of its own, there will be no degrees of freedom left to
estimate the variance of the average residuals. Identification works if we have moderate sized
groups (families, school classes, clusters of nations related to each other by trade or migration
streams) that are comparable in the sense that not every single group forms a type of its own.

One might object that identification depends on imposing a very simple structure for the error
process. Actually, it is necessary to possess at least some information on the structural errors.
Let jv  be distributed such that jjj 'E Σ=vv . The covariance matrix of the reduced form errors

will then be '
11

E jjjjjj 





β−
β+





β−
β+== DIDI'ww ΣΨ . As long as there are not too many

unknown parameters in jΣ  –  if the matrix is diagonal for instance –  it will still be possible to

infer ß from jΨ . If, on the other hand, there is no information on the error term at all, the pa-
rameter β  remains unidentified. Incidentally, this is exactly what Manski assumes in his own

exposition. One might say that for his result of non-identification, this assumption is as impor-
tant as the way of modelling social interactions.

2.7. Network Analysis

Simultaneous systems of social interactions of the type depicted in (5) were introduced by Er-
bring and Young (1978).17 Their approach is labelled network analysis or model of spatial
correlation. With respect to the modelling of social interaction, this approach is more general
than the structure explored here, but the literature does not explicitly consider either exoge-
nous effects or correlated effects. The structural equation of Erbring and Young reads:18

y Wy Z v= + +β η  . (13)

Here, as above, y  is a vector of observations of an endogenous variable, Z  is a matrix of ex-
ogenous variables and v  is a random vector. W  is a matrix that describes the structure of the
social interactions between the individuals. W  defines an autoregressive relationship between
the endogenous variables. Erbring and Young do not assume a number of separate groups, but
in principle each individual may interact with every other. They interpret their structural equa-
tion as a dynamic equilibrium of an iterative social process:
                                               
17 In geographic and biological applications, similar systems were explored even earlier, see for example Ord

(1975) and Cliff and Ord (1981), Chap. 9 and the literature cited there. Burt (1980), Friedkin (1990), Fried-
kin and Johnson (1990), and Friedkin and Cook (1990), further explore this model and concentrate on sub-
stantive aspects.

18 This notation deviates from Erbring and Young (1978) and is adapted to the equation (5).
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( ) ( ) vZWyy ++β=+ ηt1t   , with ( ) 0y =0   . (14)

The parameter β  is dubbed feedback rate. The magnitudes v  and Zη  are regarded as being
given for the whole "duration" of the process. In the first stage they directly determine ( )1y .

According to W , the vector of state variables is then transmitted to the interaction partners.
The result, ( )2y , serves as starting point for the third iterate, and so on. Dynamic equilibrium is

given for ( ) ( ) yyy ==+ t1t , i.e., if (13) holds. Again the analogy to the dynamical interpretation

of the Keynesian expenditure multiplier is very close. The social "multiplier process" cannot do
without restrictions on the parameters. By direct substitution it follows that

( ) ( ) ( )( )( )vZWWWIy +β++β+β+=+ ηt2
1t K  .

The series in brackets must converge if dynamic equilibrium is to be reached for given v  and
Zη , i.e., if the difference equation (14) is to be stable. In this case we have

( ) ( ) 12 −β−=+β+β+ WIWWI K   ,

and the system converges to ( ) ( )vZWIy +β−= − η1 .

In this view, the reduced form describes the stationary state of a dynamical system. The model
can be usefully employed for quite diverse purposes. Doreian (1981) uses it to analyse spatial
interdependencies: in the military activities of a rebel formation, for example, or in voting deci-
sions in Louisiana. Burt and Doreian (1982) investigate interdependencies in the evaluation of
leading scientific journals by the scientific community. Burt (1987) undertakes a network-theo-
retic analysis of the diffusion of a novel antibiotic among physicians in the American Midwest
and Case (1991) explores spatial interdependencies in the demand of consumer goods.

The network model can be estimated by a maximum likelihood routine. The technique pro-
posed by Erbring and Young (1978) and Doreian (1981) actually goes back to Ord (1975).19

The procedure described in these publications has one serious drawback: in general, the likeli-
hood equations cannot be solved explicitly and the likelihood function must be maximized nu-
merically. Fortunately, for the case at hand we can give an exact solution. This not only greatly
facilitates the interpretation of the resulting estimators, it even enables us to make detailed
statements about their finite sample properties.

3. FIML-Estimation of the System

3.1. The Structural Equations

Collecting together the data, the structural equations of the modified model can be written as

y Dy DZ X Z v= + + + +β γ δ η   , where (15)

                                               
19 See also Doreian (1981), Cliff and Ord (1981), Chaps. 6, and 9 and Anselin (1988), Chaps. 6 and 12.
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A further simplification lies in the notation

( ) vQyDI +=β− φ  , with Q DZ X Z=  and φ γ δ η' ' ' '=  . (16)

Note that y  is formed from the vectors y j  of group G j . The random vector v  and the matrices

Z  and X  are constructed in an analogous way. The matrix D is block-diagonal, with submatri-

ces D 1 1j
j ( j ) ( j)

'= 1
M M M

. It is idempotent and postmultiplication by y  generates a vector that yields

for every individual the average of the endogenous variable in his or her group. Postmultiplying
by Z  yields an analogous result for the exogenous variables. The block-diagonal matrix D
plays the role of W  in the model of Erbring and Young. The series

( ) ( ) ( )DIDDDI ...3232 β+β+β+=β+β+β+ K   

converges for β < 1. This is presupposed by the assumption A4. Furthermore, we shall now

specify:

A5) X  and Z  – and thus Q  – are fixed real matrices and Q'Q is of full rank;

A6) The elements of v  are jointly normal with expectation zero and covariance σ 2I.

3.2. The Likelihood Function

Our point of departure is the structural equation for the simultaneous system (16). The random
vector v  is normal, with density:

( ) ( )




 σ

−πσ= −
vv'vv 2

22

2
1

exp2
M

f  .

The observed variable y  is generated by a linear transformation from the non-observed ran-
dom variable v . Thus, y  is also normal, with density:20

( ) ( ) ( )[ ] ( )[ ] DIQyDI'QyDIyy β−




 −β−−β−

σ
−πσ= −

abs
2
1

exp2 2
22 φφ
M

f  .

Since the matrix I D− β j  possesses the ( )1j −M -fold eigenvalue 1 plus the simple eigenvalue

1 − β , it follows that ( )Nβ−=β− 1abs DI . Hence the log-likelihood function is:

( ) ( )β−+
σ

−σ−π−=βσ 1ln
2

1ln
2

2ln
2

,,l 2
22 NAMMyφ  ,

with ( )[ ] ( )[ ]φφ QyDI'QyDI −β−−β−=A

                                               
20 I D− β  is the Jacobian for the transformation ( ) ( )vQDIy +β−= − φ1 , see, e.g., Fisz (1963), p. 56.
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   ( ) ( ) φφφ QQ''QDIy'yDDIy' +β−−β+β−= 22 2  .

3.3. The Likelihood Equations and Their Solutions

We need the combination φ, ,σ β2  that maximizes the likelihood function for given y  and Q .
As necessary conditions for an interior solution, the following likelihood equations must hold:

( )[ ] 0QQ'yDIQ'
!

2

1l =−β−
σ

=
∂
∂ φ
φ

  ; (17)

∂
∂σ σ σ

l !

2 2 42 2 0= − + =M A   ; (18)

( )[ ] 0
1

11l !

2 =
β−

−−β−
σ

=
∂β
∂ NφQyDIDy' . (19)

The first two equations yield

φML ( ) ( )yDIQ'QQ' 1
MLβ−= −  ; (20)

σ 2
ML ( )[ ] ( )[ ]MLMLMLML '1 φφ QyIQ'QyDIQ' −β−−β−= D

M

( ) ( )yDIBDIy' MLML
1 β−β−=
M

 , (21)

with ( ) Q'QQ'QIB 1−−=  . (22)

B  is a symmetric and idempotent M M× -matrix. From the third likelihood equation, after
substitution of

( ) =−β− MLML φQyDI ( )yDIB MLβ−

and ( )( ) ( )( )yDDIBDDIy' MLML
2
ML 111 β−+−β−+−=σ

M
 ,

we obtain:

( ) ( ) ( ) ( ) ( )yDIBDIy'DBDyy'yDIDBy' −−−β−+−β−
M
N2

MLML 11

( ) ( ) ( ) 0112 2
MLML =β−−−β−− DBDyy'yDIDBy'

M
N

M
N  . (23)

In order to proceed, it is necessary to show the identity ( ) 0yDIDB =− . Because the equation
for φML  in (20) has, for given β ML , the form of an OLS estimator, the equality

( ) vQyDI ˆMLML +=β− φ  

holds, with

( )yDIBv MLˆ β−=  and Q' v 0$ = .

It immediately follows that

( ) ( ) ( )vDIQDIyDI ˆML −+−=− φ .
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Because BQ 0=  and ( ) 0DZXDZBBDQ == , it follows that ( ) 0QDIB =− . Further-
more, with Q' v 0$ = , we also have Q'Dv 0$ = . This yields:

( ) ( ) ( )( ) ( ) ( ) 0vDIDvDIDBvDIQDIDByDIDB =−=−=−+−=− ˆˆˆMLφ  .

Thus equation (23) simplifies to

( ) ( ) ( )
DBDyy'

yDIBDIy' −−
−

=β−
NM

N2
ML1  .

Since β < 1, the estimator β ML  is uniquely determined. The other estimators are obtained by

substituting in equations (20) to (22). In the appendix it is shown that the second order condi-
tions for a local maximum hold. The results are summarized as follows:

Proposition 2: The maximum likelihood estimators β σML ML ML ML, , ,2 γ δ  and η ML  for system (15)
are given by

β ML = −1 e  , with ( ) ( )
DyBDy'

yDIBDIy' −−
−

=
NM

Ne  ;

( ) ( )yDIBDIy' −−
−

=σ
NM

1
ML

2   ;

( ) ( ) ( )yDIQ'QQ' 1
MLMLMLMLML '''' β−== −ηδγφ  .

3.4. Calculating the Estimators

It is readily seen that e can be interpreted as the ratio of two sums of squared residuals from
OLS estimates. The ML estimation of the key parameter β  can be carried out in three steps:

a) First, an OLS estimate is run with Q  as regressor and the deviations ( )yDI −  from the

group average as regressand. The sum of squared residuals for this auxiliary regression,

( ) ( ) ( ) ( )yDIBDIy'v'v −−=11 ˆˆ  ,

yields the ML-estimator for the variance σ 2 , after correcting with ( )NM −1 . The expres-
sion can also be generated by means of a regression on the M K× -matrix ( )ZDI − .

b) A second auxiliary regression uses Dy, the group averages of the endogenous variables, as
regressand vector and again Q  as regressor matrix. This yields the SSR

( ) ( ) DBDyy'v'v =22 ˆˆ  .

It is possible to generate the same expression using the residuals of a regression on the
( ) MJK ×+ -matrix DZ X .

c) Finally, the ratio of the SSRs in a) and b) is calculated and multiplied by ( )NMN − :

( ) ( )

( ) ( )22

11

ˆˆ
ˆˆ
v'v
v'v

NM
Ne
−

=   .

The square root of this expression is equal to 1 − β ML .
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This account shows that the structure of the ML-estimator corresponds exactly to the solution
of the identification problem worked out in Section 2.6 above, as shown in equation (12). In
order to calculate ( ) ( )yDIQ'QQ' 1

MLML β−= −φ , it is necessary to generate ( )yDI MLβ−  first.
This is done by subtracting from each observation y ji  the amount β ML jy . Then a regression of
this transformed variable on the exogenous variables in Q  is performed.

3.5. Characterizing the Estimators

We now turn our attention to the finite sample distributions of β ML  and σ ML
2 . Consider first the

SSR ( ) ( )11 ˆˆ v'v . It is ( ) ( )( )vQDIyDI +−=− φ , and as ( ) 0QDIB =− , this leads to

( ) ( ) ( )vBv'v'v 111 ˆˆ = , with  ( ) ( ) ( )DIBDIB −−=1   .

The matrix ( )1B  is symmetric and idempotent. Its rank is equal to its trace:

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) .trtrtr

trRank 1

DQQ'QQ'QQ'QQ'DI

DIQ'QQ'QDIDIB
11

1

−−

−

+−−=

−−−−=

Now ( ) ( ) ( ) ( ) 





−=− ∑

=
'1trtr

jj
j

j1j
MMM

N

M
11IDI = −M N  and ( ) QQ'QQ' 1−tr  = +2K J . Further-

more, DX X≡  and DQ DZ X DZ=  lead to:

( ) DQQ'QQ' 1−
































=

−

DZZ'XZ'DZZ'
ZX'XX'ZX'

DZZ'XZ'DZZ'

ZZ'XZ'DZZ'
ZX'XX'ZX'

DZZ'XZ'DZZ' 1
( ) ( )

( )















=

000
0I0
I0I

J

KK

(24)

so that ( ) JK +=− DQQ'QQ' 1tr . Therefore one obtains:

( ) KNM −−=1tr B  .

For the distribution of the sum of squared residuals, it follows that:

Proposition 3: The expression

( ) ( )112
ˆˆ1
v'v

σ
 (25)

is distributed χ 2  with M N K− −  degrees of freedom. The statistic

( ) ( )
2
ML11

2 1 σ
−−

−=
−−

=
KNM

NM
KNM

s v'v

is an unbiased estimator for σ 2  with variance 2 4σ
M N K− − . The estimator σ ML

2  is consistent

for N N
M→ ∞ →, ρ  and 1

N Q'Q C→  and Rank C = +2K J .

Proof: The elements of v  are stochastically independent and distributed as ( )2,0N σ . Since

matrix ( )1B  is idempotent with rank M N K− − , the expression ( )vBv' 12

1
σ

 is χ 2  distributed
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with the same number of degrees of freedom. The second part of the proposition follows from
taking into account the expectation and variance associated with the χ 2 -distribution. n

With regard to β ML , the distribution of the SSR ( ) ( )22 ˆˆ v'v  must be determined in an analogous

fashion. By definition it is

( )DvDQDy +
β−

= φ
1

1
  , (26)

and because of BDQ 0=  we obtain:

( ) ( ) ( ) ( )vBv'v'v 2222
1

1ˆˆ
β−

= , with  ( ) DBDB 2 =   . 

The matrix ( )2B , too, is symmetric and idempotent. Its rank can be calculated as

( ) ( ) JKN −−=−= − DQQ'QQ'DB 1trtrRank 2   .

Consequently the expression

( )
( ) ( ) ( )vBv'v'v 22222

2 1ˆˆ1
σ

=
σ

β−
(27)

follows a χ 2 -distribution with N K J− −  degrees of freedom. Finally we have

( ) ( ) ( ) ( ) 0BDDDIBDIBB
0

=⋅−−=⋅ 434 2121   .

The quadratic forms ( )vBv' 1  and ( )vBv' 2  are thus stochastically independent and the ratio of

the two expressions (25) and (27), corrected by their respective degrees of freedom, follows an
F-distribution:

( ) ( ) ( )

( ) ( )
K-N-MJ,-K-NJKN

KNM F~
ˆˆ
ˆˆ

1
11

222

v'v
v'v

−−
−−β−  .

For N → ∞  and N
M → ρ , this expression converges stochastically to unity. Therefore setting

( ) ( )

( ) ( )

( )
( ) ( ) e

NMKNM
NJKN

KNM
JKNq ⋅

−−−
−−=⋅

−−
−−=

22

11

ˆˆ
ˆˆ
v'v
v'v

implies immediately:

( )21plimplim β−==
ρ→
∞→

ρ→
∞→

eq

M
N

M
N

NN
  .

Let α,,F mn  be the value that with probability α  is exceeded by a random variable following an

F-distribution with n and m degrees of freedom. Then we can state
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Proposition 4: For N N
M→ ∞ →, ρ  and 1

N Q'Q C→ , with Rank C = +2K J , the estimator

β ML  is consistent. The equation 

α−=










−≤β≤⋅− α−−−−α−−−−
1F1F1W

2
,,

2
,, JKNKNMKNMJKN

qq

defines a confidence interval for β .

Proof: The second part of the proposition follows from

( ) α−=








≤β−≤ α−−−−α−−−−−
1F1FW

2
,,

2

2
1,, KNMJKNKNMJKN q

  ,

taking into account the identity 

2
,,2

1,, F
1F

α−−−−

α−−−−−
=

JKNKNM
KNMJKN

  . n

Ultimately, for the ML estimator ( )'''' MLMLMLML ηδγφ = , the following holds:

Proposition 5: For N N
M→ ∞ →, ρ  and 1

N Q'Q C→ , with Rank C = +2K J , the estimator

ML'φ  is consistent for ( )'''' ηδγφ = .

Proof: Under the given conditions, the OLS estimator ( ) ( )yDIQ'QQ' 1 β−−  is consistent for
φ  in equation (16). The parameter β  is not known, but β ML  is available. The difference vector,

( ) ( ) ( )( ) DyQ'QQ'yDIQ'QQ' 11 −− β−β=β−− MLMLφ ,

is the product of the estimation error β β− ML  and an OLS estimator for equation (26), with Q
as design matrix. Because DQ DZ X DZ= , the magnitude ( ) DyQ'QQ' 1−  converges in

probability to the fixed vector [ ]'''''
1

1 0δηγ+
β−

. Finally, β β− ML  is stochastically conver-

gent to zero and the proposition follows. n

3.6. Asymptotic Distribution of the Estimators

The information on the finite sample properties of β ML  is very valuable in the given context:
The parameter β  stands for endogenous social effects and the distribution of its estimator al-
lows us to distinguish between different hypotheses concerning the correlation of behaviour in
social groups. Yet some questions remain. The estimator φML  is the product of a normally dis-
tributed variate and one that follows an F distribution. We know that it is consistent, but this is
not enough for hypothesis testing. Besides, we would like to have the covariance matrix of the
estimators.

It is well known that, under weak conditions, ML estimators are asymptotically normal with
the inverse of the information matrix as covariance matrix, if the observations are independent
and identically distributed.21 A similar convergence result can also be derived in the present

                                               
21 See Cramér (1946). For explanations and proofs, see, e.g., Theil (1971).
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case. It is convenient to refine the notation and slightly strengthen the assumptions concerning
the parameter space:

A7) Let ( )βσ= 2'' φθ . The true parameters ( )0
2
000 '' βσ= φθ  are in the interior of the 

parameter space Θ . The latter is a closed and convex interval of the R2 2K J+ + , with 
σ 2 0>  and β < 1 for all θ ∈ Θ .

This notation explicitly differentiates between permitted parameters, θ ∈ Θ , and the true pa-
rameters, θ 0. For a formal statement on the asymptotic distribution of the ML-estimators we
need the following lemma:

Lemma 1: Let the elements q M K Jtk , t , , ; k , ,= = +1 1 2K K  of matrix Q  satisfy

q qtk < < ∞ , and lim
M
N
M

N→ ∞
→

=
ρ

1 Q'Q C, with  rank C = +2K J  .

Then, for N N
M→ ∞ →, ρ , the following holds:

( )( )0,Nl1

0

θ
θ θ

R0
d

N
→

∂
∂  ,

where

 ( ) ( )θθ N

M
N
N N

RR 1lim
ρ→

∞→
=   and ( ) ( )

'
l

E
2

0 ∂θ∂θ
⋅∂−=

θ
θNR  .

 Specifically, one obtains:

( )

( ) ( )






















σ+
β−β−β−

β−σ

β−

σ
=

2
0002

00
0

0
2
0

0
0

2
0

0

2'
1

1
11

1
12

1
1

1

NN

NM
N

φφφ

φ

θ

DQQ'DQQ''

0'

DQQ'0QQ'

R  . (28)

Proof: First, calculating the negative of the expected Hesse matrix, 
( )

'
l

E
2

0 θθ
θ

θ ∂∂
∂

−
y

, one obtains a

function ( )θNR  of θ . Evaluating this function at 0θ  yields ( )0θNR , the so-called information

matrix. Second, by substituting the system equation (16) into the derivatives of the likelihood
function as stated in (17) to (19), one obtains for 0θ , the true parameter values:

( )

( ) ( )






















σ−+
σβ−

σ−
σ

σ
=

















∂β∂
∂σ∂
∂∂

=
∂
∂

2
002

00

2
04

0

2
0

2

'
1

1
2

1

1

l
l
l

l

0

0

N

M

Dvv'DvQ'

vv'

vQ'

φ

φ

θ
θ

θ
 . (29)
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In this expression, φ∂∂l  is a ( )JK2 + -vector; ∂ ∂σl 2  and ∂ ∂βl  are scalars. The mathemati-

cal expectation of (29) is equal to the zero vector. Calculating the covariance matrix leads to
the same matrix ( )0θNR  as given in (28):

( ) ( )0

2

'
l

E
'
llElcov

0
00

0
0

0

θ
θθ

θ
θθφ θ

θθ
θ

θ
θ NR

y
=

∂∂
∂

−=





∂
∂⋅

∂
∂=










∂
∂

  .

This identity, of course, holds quite generally; see, e.g., Theil (1971). A random vector is a-
symptotically normal if the distribution of any nontrivial linear combination of its elements con-
verges to the univariate normal. Consider the components of (34). Every element of the sub-

vector ∂ ∂l φ θ 0
 is normal. In ∂ ∂σl 2

0θ , the magnitude 1
0
2σ v' v  follows a χ 2  distribution with M

degrees of freedom. Finally, in ∂ ∂σl 2

0θ  the expression φ0 'Q'Dv  is normal and 1
0
2σ v'Dv  is χ 2

distributed with N  degrees of freedom, because D is idempotent with rank N . Every linear

combination of the elements of vector 1

0
N

∂
∂

l
θ

θ

 is a linear combination of normal or asymp-

totically normal random variables. Thus, this vector is asymptotically normal with the parame-
ters stated above. n

With this preliminary work done, the asymptotic distribution of the maximum likelihood esti-
mators can now be characterized as follows:

Proposition 6: The conditions of Lemma 1 hold. Let ( )ML
2
MLMLML '' βσ= φθ , and

( )( )JK +2''''' 0δ+ ηγ=ξ . Then for N N
M→ ∞ →, ρ  the vector ( )0ML θθ −N  is asymptoti-

cally normal with expectation zero and covariance matrix ( ) ( ) 1
0

1
0 lim −

ρ→
∞→

− = θθ N

M
N
N

NRR , where

( )

( )

( )










































 −σ

β−
−
β−−






 −σ

β−−
−
β−−

−
σ

−






 −σ

β−−
−
























 −σ

σ=

−

−

M
NNNM

M
NN

NMNMNM

M
NNNM

M
NN

N

12

1

12

1

121

12

11'
12

1

2
0

2
0

0
2
0

0

0
2
0

0

0
2
0

0
000

2
0

2
0

1
0

01ξ

ξ

ξξξξ

θ

1QQ'

R
 .

Proof:22 The gradient of the log likelihood in θ ML  can be written as a Taylor series:

( )
∗∂∂

∂−+
∂
∂=

∂
∂

θθθ θθ
θθ

θθ '
lll 2

0ML

0
ML

  ,

                                               
22 The proof follows Amemiya (1985), pp. 111-113 and pp. 121-123.



21

with θ * between θ 0  and θ ML . As a necessary condition for an interior solution, θ ML  satisfies the
likelihood equations. Therefore, the left-hand side is equal to the zero vector:

( )0
θθ

θθ
θθθ

0

−
∂∂

∂−=
∂
∂

MLN
NN *'

l1l1 2

  . (30)

Now let ( )jjl yθ  be the log likelihood as it is computed from the marginal density for the vec-

tor of endogenous variables in group G j . Because the y j  are independent, we have

( ) ( )∑
=

=
N

1j
jjll yy θθ  and therefore

( ) ( )∑
= ∂∂

∂
−=

∂∂
∂−

N

NN 1j

j
22

'
,l1

'
,l1

θθ
θ

θθ
θ yy   .

The elements of the matrix on the left are arithmetic means of N  independent variables with
bounded variance. The strong law of large numbers makes them converge to the mathematical

expectation. The matrix 
( ) ( )θ

θ NR=
∂θ∂θ

⋅∂−
'

l
E

2

0

, on the other hand, converges uniformly to the

continuous function ( )θR , as 1
N Q'Q converges to a fixed matrix C. Under these conditions

it is sufficient23 for

( )0
θ

θ
θθ

R=
∂∂

∂−
∗

ρ→
∞→ '

l1plim
2

N
M
N
N

that θ * converges in probability towards θ 0 . As θ ML  is consistent for θ 0 , this is indeed the case.
In the appendix it is shown that ( )0θR  is positive definite. The determinant of a matrix is a

continuous function of the elements, so ( )θR  is non-singular in the neighbourhood of θ 0. Now

consider the left-hand side of (35). Lemma 1 states that the distribution of this expression con-
verges to ( )( )0,N θR0 . This completes the proof. The appendix shows how to calculate the as-

ymptotic covariance matrix as stated in the proposition. n

4. Summary and Evaluation

Interactions in social groups can be the reason why the outcome of a variable at the individual
level is strongly influenced by the average outcome of the same variable in the environment.
This average, conversely, is determined by the same exogenous characteristics as the individual
realizations. Social effects can therefore act as an amplifier for systematic differences between
persons. The average realizations of groups with different exogenous characteristics do not re-
veal which part of the observed differences can be attributed to social effects. Manski works
out this problem in nuce. Actually, it is striking how social scientists routinely make an a priori
decision in favour of one of the competing hypothesis.

                                               
23 See Amemiya (1985), p. 113.
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Yet Manski's forceful exposition obstructs the view on possible solutions to these problems. It
was shown here that not only systematic differences between individuals are magnified, but
also random differences in the mean realization of the endogenous variable. The social effects
give rise to a group identity: The outcome of groups with identical characteristics deviate in a
statistically conspicuous way. This allows identification even under very unfavourable circum-
stances. As demonstrated above, the estimation procedure itself is relatively simple.

The modification of Manski's metamodel can be regarded as a variant of the network model
discussed in Section 2.7, with a special matrix W  and extended to include exogenous social
effects and correlated effects. Manski briefly mentions this class of models. His criticism is this:
The network model is capable of capturing social interactions in smaller groups of friends,
colleagues or members of the same household. For large social groups like neighbourhoods,
researchers usually have to use random samples. A literal interpretation of the network analytic
approach would then amount to assuming that the members of the random sample know each
other and choose their outcome only after they have been selected into the sample.

This argument is not complete. On the one hand, random samples can well be used if the
structure of the interaction matrix is appropriate. Case (1991) investigates interregional inter-
dependencies in consumer demand and for each region uses a random sample; see also the es-
timation procedures in Doreian (1981). The model elaborated here is not affected either – the
procedure outlined in Section 2.6 will provide a consistent estimator even when there is only a
random sample from each group. Furthermore, the objection does not constitute an identifica-
tion problem, but primarily reflects the difficulties in finding adequate data.24

Manski replaces stochastic interactions between individuals by a functional relationship. By
relaxing this idealization, the identification problem that arises can generally be solved.

Appendix: Second Order Conditions and Asymptotic Covariance Matrix

The likelihood equations have a unique solution. To make sure that this solution characterizes
a local maximum, the Hesse matrix evaluated at the solution ( )ML

2
MLMLML '' βσ= φθ  is

tested for sign definiteness:
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Let ( ) 22
321 R'' ++∈= JKpppp . Here, p1 '  is a ( )JK +2 -vector and p2  and p3 are scalars.

Consider the quadratic form

                                               
24 See Marsden (1990) on the collection of data for network models.
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This sum of squares is positive whenever p  is not the zero vector, so H* is positive definite.

Then 
ML

2

'
l
θθ∂∂

∂
 is negative definite, and θ ML  specifies a unique local maximizer.

For the determination of the asymptotic covariance matrix of θ ML  it is necessary to examine the

expectation of the Hesse matrix, i.e. the matrix 
( )

'
l

E
2

0 θθ
θ

θ ∂∂
∂ y

. The likelihood is evaluated at

θ ∈ Θ , with the expectation being based on the distribution of y  according to the true parame-
ters:

( ) ( ) ( )vQDIvQDIy +





β−
β+=+β−= −

0
0

0
0

1
0 1

φφ  ,  with  v  ~ ( )I0 2
0,N σ  .

Direct calculation shows that all elements of 
( )

'
l

E
2

0 θθ
θ

θ ∂∂
∂ y

 are continuous functions of φ σ, 2  and

β  in the whole parameter space. If,  for N → ∞  and N
M → ρ , the matrix 1

N Q'Q converges

to a fixed matrix C, then 1
N Q'DQ  also converges, and all the components of

( ) ( )
'

,l1
Elim

2

0 θθ
θθ

θ ∂∂
∂−=

ρ→
∞→

y
R

N
M
N
N

are continuous functions of φ σ, 2  and β  in the whole parameter space. Evaluation of the ex-

pected negative Hesse matrix, 
( )

'
,l

E
2

0 θθ
θ

θ ∂∂
∂− y

, in θ 0 yields the information matrix as it was de-

fined in Lemma 1. The estimator θ ML  is consistent for θ 0. Thus it comes as no surprise that the

matrix ( )0θNR  can be formally derived from 
ML

2

'
l
θθ∂∂

∂−  by simply replacing the magnitudes

φML ML, σ 2  and β ML  in (31) by the corresponding true parameters. The matrix − ∂
∂ ∂

2 l
' MLθ θ  is posi-

tive definite, and the same applies to ( )0θNR , as well as to the asymptotic matrix ( )0θR .

The asymptotic covariance matrix of the ML estimator is given by the inverse of the informa-
tion matrix ( )0θNR . With the help of the Gauss algorithm one obtains
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Consideration of identity (29) furthermore leads to
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which in turn yields ( ) 1−θNR  as stated in Proposition 6.
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